

What is Radiation Monitoring?

If you know the enemy and you know yourself, you need not fear the result of a hundred battles – Sun-Tzu (ca.400 BC)

Operational Definition:

Monitor any beam induced conditions which affect the performance, reliability, lifetime of detectors or infrastructure.

Methods adopted at CDF (D0):

- Record/Monitor beam conditions and radiation.
 - real time and samples
- Evaluate the radiation field.
 - measurements and simulation
- Modify conditions to reduce risk.
 - modify/abort the beam (beam position, tune, collimator positions)
 - modify the conditions in the monitored region (shielding)

CDF-II Detector (G-rated)

Radiation Monitoring at CDF

Initial Goals:

- Measure distribution and rates of radiation
- Provide early estimate of Si tracker lifetime

Secondary Goals:

- Identify/evaluate radiation sources in/near CDF
- Additional instrumentation for the accelerator

Monitoring Technologies:

- Thermal Luminescent Dosimeters (TLDs)
- Silicon PIN diodes
- Ionization chambers
- Silicon detectors
- Scintillation counters
- Other beam monitors

Calculating Losses

Beam Losses all calculated in the same fashion

- Detector signal in coincidence with beam passing the detector plane.
- Accelerator Network (ACNET) variables differ by detector/gating method.

Beam Monitors

Luminosity monitors: monitor proton-antiproton collisions BSC counters: monitor beam losses and abort gap Halo counters: monitor beam halo and abort gap

Detectors

West Alcove floor

ACNET Devices:

BOPHSM: beam haloBOPBSM: abort gap lossesBOPAGC: 2/4 coincidence abort gap losses

BOPLOS: proton losses (digital)LOSTP: proton losses (analog)BOMSC3: abort gap losses (E*W coincidence)

Beam Halo Counters

Typical Store

Beam Parameters:

Protons:5000 - 9000 10^9 particlesAntiprotons:I00-I500 10^9 particlesLuminosity:I0 - 70 10^{30} cm $^{-2}$ s $^{-1}$

Losses and Halo:

	Rate	Limit	
Quantity	(kHz)	(kHz)	comment
P Losses	2 - 15	25	chambers trip on over current
Pbar Losses	0.1 - 2.0	25	chambers trip on over current
P Halo	200 - 1000	-	
Pbar Halo	2 - 50	-	
Abort Gap Losses	2 - 12	15	avoid dirty abort (silicon damage)
LI Trigger	0.1-0.5		two track trigger (~I mbarn)

Note: All number are taken after scraping and HEP is declared.

Monitor Experience

"Typical good store"

Tevatron Radiation Protection Beam Loss Monitors(BLM)

- Cylindrical Ionization Chamber
 - 110 cc Ar @ atmospheric pressure

• Part of Tevatron abort system

- Samples every 10 turns, abort on any sample above threshold
- Conversion 70nA/(rad/s)

Note: Tevatron revolution time = 21µs

BLM Electronics

BLM Locations

CDF

Accelerator Tunnel

BLM Data

BLM FIFO on Abort

BLM Protection Disabled

- Magnet quench
- Beam deflected into D49 target
- Estimate 20-30 turns to make hole (400 -600µs)
- Existing system does not react fast enough to prevent damage to target in this incident.

Upgrade in BLM system being considered.

Measuring the Radiation Field

- Thermal Luminescent Dosimeters (TLDs)
- Calibrate other devices
- Advantages:
 - + passive
 - + large dynamic range(10⁻³-10² Gy)
 - + good precision (<1%)</p>
 - + absolute calibration
 - + γ,n measurements
- Disadvantages:
 - harvest to read
 - large amount of handling
 - non linearity at high doses
 - only measure "thermal" neutrons

10

10⁻ 10⁻ 10⁻ Predicted Dose (Rad)

Good for accurate, low-medium dose evaluation

Radiation Field Measurements

Collision Hall Radiation

Measure Larger Accumulated Doses CDF

PIN diode

1cm

PIN Diodes

- Advantages:
 - passive/active +
 - in-situ readout +
 - large dynamic range + $(10^2 - 10^5 \text{Gy})$
- Disadvantages:
 - Temperature/history dependent
 - Calibrate in-situ
 - active operation needs periodic calibration

DØ (Active)

Passive Diode Measurements

l_{bias} (nA) V_{bias} for comparison • I/V measurements 600 Diode C₀ 500 • Bias currents larger 400 for diodes closer to Diode B_r 300 the beam. 200 Diode A, ı_{bias} vs beam 100 Correct for T 0 25 50 75 125 175 100 150 200 0 V_{bias} (Volts) changes l_{bias} (nA) 1000 No annealing Temp Corrected to 20C corrections 800 r = 3.3cm r = 5.1cm Radiation from • r = 14.2cm 600 collisions dominate 400 (TLD measurements) 200

0

0

50

150

200

250

L dt (pban⁻¹)

300

100

Silicon Detector Dose (Damage)

• Measure I_{bias}

Note: Beam offset 5mm from detector axis

Plans for Future (CDF)

Simulations of the radiation

- collisions
- beam-gas (losses)
- Measure neutron energy spectrum near CDF
 - Improve neutron dosimetry
 - Bonner spheres + TLDs Additional diodes near silicon
- Active monitors (diamond?)

Summary

• Multi-faceted approach to monitor radiation

- Redundant measurements
- Multiple technologies
- Relate measurements to beam quantities
- Monitors work well
- Improvements anticipated in the future
 - Telescope for halo and abort gap monitors
 - Synchrotron light to monitor beam in abort gap

References:

CDF/D0 Radiation Monitoring:

- http://ncdf67.fnal.gov/~tesarek/radiation
- http://www-d0.fnal.gov/nikhef/radmon/

Radiation Monitoring:

- D.Amidei, et al., Nucl. Instr. and Meth. **A350** (1994) 73.
- S.D'Auria, et al., Nucl. Instr. and Meth. **A513** (2004) 89.
- K. Kordas, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19 -25 (2003).
- R.J. Tesarek, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19 -25 (2003).

Beam Loss Monitors:

• R.E. Shafer, et al., "Proc. of the 12th Conf. on High Energy Accelerators", Fermilab (1993)609.

Beam Monitoring:

- M.Karagoz-Unel, R.J. Tesarek, Nucl. Instr. and Meth. A506 (2004) 7.
- M. Gallinaro, et al., **FERMILAB-CONF-02-121-E** (2002).
- D.Acosta, et al., Nucl. Instr. and Meth. A461 (2001) 540.

Activation Backgrounds:

• J.D Cossairt, "Radiation Physics for personal and Environmental Protection", Fermilab technical memo, **FERMILAB-TM-1834**, November (2002).