

Solid-State Radiation Sensors

Federico Ravotti TS-LEA-RAD

Maurice Glaser, Michael Moll PH-DT2-SD

Outline

- Introduction;
- "Sensor Catalogue";
- Dose Sensors (RadFETs);
- Fluence Sensors (p-i-n and detector diodes);
- Readout Circuitry;
- Integration Issues in the Experiments;

Conclusions.

Introduction

- TS-LEA and PH-DT2 have characterized a set of sensors for IEL (Dose) and NIEL (Φ_{eq}) measurement;
- Sensors suited for the <u>LHC experiments environment</u>;
- "Sensor Catalogue" published in March 2005;
- R&D on sensors is ongoing: OSL, n_{th} sensors, …
- Integration into the experiments and their readout is not our responsibility!

Sensor Catalogue

http://cern.ch/lhc-expt-radmon/

Address 🕘 http://lhc-expt	radmon.web.cem.ch/hc-expt-radmon/	⇒Go
LHC Experiment Radiation Monitoring (RADMON)	Solid-State Radiation Sensor Working Group	
<u>Solid-State</u> <u>Radiation Sensor</u> <u>Group</u>	(DATA COMPILATION OF SOLID-STATE SENSORS FOR RADIATION MONITORING)	
Publications	by	
	Federico Ravotti (TS-LEA-RAD) Maurice Glaser and Michael Moll (PH-DT2-SD)	
Link to LHC Machine (<u>RADWG</u>)	TABLE OF CONTENTS	
Link to Tevatron	Parte	
(<u>CDF</u> , <u>D0</u>)	INTRODUCTION 3	
Link to HERA	Review Of The Presented Solid-State Dosimetric Technologies	
(<u>H1</u> , <u>HERMES</u> , ZEUS)	Radiation-sensitive Field Effect Transistors (RadFETs) 4	
	Forward and Reverse biased p-i-n silicon diodes 5	
	THIN-OXIDE RADFET [R.E.M.] 7	
<u>Home</u>	Thick-Oxide RadFET [CNRS-LAAS] 14	
	High-sensitivity Silicon Diode [CMRP] 19	
	BPW 34F SILICON DIODE [OSRAM, SIEMENS] 23	
	Particle-Detector Diode [ST-Microelectronics] 28	
	APPENDIX: R.E.M. RADFETS PROCUREMENT SPECIFICATIONS 32	
	Standard RADMON Integrated Packaging 36LD Chin Carrier	•

Publication list, minutes of the meetings, and other informations available also through the same web-page ...

F.Ravotti

LHCb-BCM Workshop 02-03-06

TID (Dose) Sensors

- Thin-Oxide RadFET dies (0.13-0.25 μ m):
 - "low" sensitivity (0.1 Gy) high dynamic range (~ 100 kGy);
 - Minimize SiO₂ recombination effects \rightarrow mixed-LET particle fields;
 - Suited for dosimetry in inner-detector regions;
- Thick-Oxide RadFET dies (1.6 μ m):
 - "high" sensitivity (mGy) low dynamic range (~ 10 Gy);
 - Measurement in "conventional" (γ + n) radiation fields.
 - Suited for dosimetry in outer-detector regions;

CERN

p-i-n diodes: Bulk damage in Si base \rightarrow V_F shift proportional to fluence

 Φ_{eq} (Fluence) Sensors

High-Sensitivity diodes:

- Range: $\Phi_{eq} < 2x10^{12} \text{ cm}^{-2}$; Sensitivity: ~ 2x10⁸ cm⁻²/mV;
- Packaged or Si Crystal (~ 1 mm³) for wire-bonding;

Low-Sensitivity diodes:

- Range: 2x10¹² to 4x10¹⁴ cm⁻²; Sensitivity: ~ 8x10⁹ cm⁻²/mV;
- Commercial Packaging (~ 5 mm²), no other choices!

and TID Readout Φ_{eq} ⁱF Currents: 100 μ A to 200 μ A; Read-out o V dd Time: 5 sec (optimum), ⁱbias Signal V_F Diode OPA ADC А V_{cc} 1 sec (minimum). Exposure С

- Currents: 1 mA to 25 mA;
- Time: 50 ms (optimum),

200 ms (maximum).

F.Ravotti

CERN

(Fluence) Sensors Φ_{eq}

Detector diodes: Bulk damage in Si base $\rightarrow I_{I}$ shift proportional to fluence

10⁻³

- Particle Detector diodes (300 µm):
 - Range: 1×10^{11} to 5×10^{14} cm⁻²; Sensitivity: ~ 4×10^{9} cm⁻²/nA;
 - some samples (7 mm²) on stock.
 - More complicate readout! \bullet

Integration Issues 1/2

about 30 x 15 x 5 mm PCB

 $\Phi_{\rm eq}$ Sensors covering 2

dynamic ranges!

Temperature sensor

TID sensors Package: Integration of several devices!

CERN

The TID sensors can be strongly affected by the surrounding materials

standard connector

RADMON BOARD (up to 11 sensors)

The sensors PCB can be integrated in "online" data acquisition systems but can be also removed and used in "off-line" mode on a laboratory test bench.

F.Ravotti

Soldering

contacts

LHCb-BCM Workshop 02-03-06

F.Ravotti

LHCb-BCM Workshop 02-03-06

Package Geometry

R. Capra, S. Guatelli, M. G. Pia - INFN Genova, Italy

F.Ravotti

February 2006.

Study of Packaging Effects

R. Capra, S. Guatelli, M. G. Pia - INFN Genova, Italy

- Experimental test
 - 254 MeV proton beam;
 - various configurations: with/without packaging, different covers;
 - dose in the 4 chips;
- Simulation
 - same set-up as in the experimental test (for validation);
 - also predictive evaluations in other conditions.

No packaging

F.Ravotti

With packaging

LHCb-BCM Workshop 02-03-06

With a ceramic or FR4 lid

CERN

Conclusions

- A set of sensors for the radiation monitoring (IEL and NIEL) in the LHC Experiment environment is available;
- The sensor choice has to take into account: expected type of damage, radiation field intensity and composition;
- The sensors for the LHC startup have been already procured in 2005.
- Sensors in delivery to the Experiments A few parts are now available in stock for some sensor types (new order may be needed !)
- \succ The integration remain the responsibility of the Experiments.