

Status of Radiation Monitor Studies

Progress on the characterization of "on-line" dosimeters for CMS

Ravotti Federico EST-LEA CMS

F.Ravotti

3th CMS Radiation Monitoring Meeting 15 May 2003

Outline ...

- → CMS requirements;
- → Status until December 2002;

RadFETs dosimeters:

- \rightarrow Last test-beam data analysis;
- \rightarrow Calibration suitable for CMS environment;
- \rightarrow Progress on instabilities studies;
- New types of on-line devices for Radiation Monitoring:
 - → OSL's → OSRAM *pin*-diodes
- Conclusions & Future works

CMS Requirements

- \rightarrow Mixed radiation environment;
- \rightarrow Different for each sub detector;
- \rightarrow Spread requirements in terms of Sensitivity and Dynamic range:

Requirements for radiation monitoring

- > Fluence Range: $1 \times 10^9 \div 1 \times 10^{14}$ particle/cm²
- Fluence Sensitivity Required: 10⁸ ÷ 10¹¹ particle/cm²
- > Dose Range: $10^{-1} \div 10^4 Gy$
- > Dose Sensitivity Required: $10^{-4} \div 10^2 Gy$

Values foreseen over 1 year lifetime from simulations

Situation at the end of year 2002 (1)

Several test-beam proved the feasibility of a system based on:

- RadFETs \rightarrow deposed dose measurement (build-up of charge into SiO₂ MOS oxide)
- $-p^+/n/n^+$ diodes \rightarrow particle fluence measurement (bulk damage into n-Si base)

Devices to perform on-line measurements of integrated fluence and dose.

They need to be biased only during readout.

Different types of RadFETs and one type of diodes were tested.

Situation at the end of year 2002 (2)

– RadFETs

- wide dynamic range (< 70 kGy)</p>
- "low" sensitivity 0.1 Gy (max 0.01 Gy)
- Neutron response to understand

(packaging ?)

- Particle dependent (not linear) response:
 - \rightarrow Calibration (γ response ?)
- > Instabilities:
 - ightarrow annealing of the trapped charge

(interface state ?)

- p⁺/n/n⁺ diodes
 - very low dynamic range
 - $(\le 10^{12} \text{ p/cm}^2)$
 - high sensitivity (~ 10⁸ p/cm²)
 - Linear response
 - Annealing not verified

Outline ...

- \rightarrow CMS requirements;
- \rightarrow Status until december 2002;

RadFETs dosimeters:

→ Last test-beam data analysis;

- \rightarrow Calibration suitable for CMS environment;
- \rightarrow Progress on instabilities studies;

• New types of on-line devices for Radiation Monitoring:

- → OSL's → OSRAM *pin*-diodes
- Conclusions & Future works

Last RadFETs test beam 1

20 MeV n IRRADIATION

@ UCL T2 Neutron Beam (Louvain,BE)

50 MeV of primary deuteron beam on a beryllium target: ⁹Be (d,n) ^xX

¹³⁷Cs γ IRRADIATION

@ CERN <u>G</u>amma <u>Irradiation</u> <u>F</u>acility

740 GBq⁽¹⁹⁹⁷⁾ of ¹³⁷Cs

1.96x10¹³ <u>n</u> cm⁻² h⁻¹ on 3 cm radius beam with ~ 2 % of γ contamination

662 KeV photons in the second irradiation area

F.Ravotti

3th CMS Radiation Monitoring Meeting 15 May 2003

Last RadFETs test beam 2 20 MeV <u>n</u> IRRADIATION – General

Aim of the test

Understand the RadFETs neutron response and device's package influence.

Devices used

- 1 set of bare RadFETs chips.
- 3 sets covered with different PE thickness (2,5,10 mm).

Last RadFETs test beam 3 20 MeV <u>n</u> IRRADIATION – Setup

bare chips

covered chips

2 sets of dosimeter placed inside and outside the beam to evaluate the contamination $\rightarrow \sim 2\%$

LiPE box to moderate and capture the scattered neutrons via ${}^{6}Li(n,\alpha){}^{3}H$ and no γ emission.

New-type flexible RadFETs

- chip mounted on thin / flexible kapton carrier

- a couple of chip were tested (bare and covered)

Last RadFETs test beam 4 20 MeV n IRRADIATION – Ongoing Analysis 1

The signal of covered devices is about 3 times higher than the bare ones

 \rightarrow strong package influence verified!

 \rightarrow influence of "Bulk damage" in Si layer will be investigated.

Last RadFETs test beam 5 20 MeV <u>n</u> IRRADIATION – Ongoing Analysis 2

Simple calculation using mono-energetic recoil protons only (10 MeV)

- Signal mostly due to recoil protons according with ¹H cross section;
- Influence of the PE thickness \Rightarrow not fully understood;
- Simulation has to be done.

Last RadFETs test beam 6 20 MeV <u>n</u> IRRADIATION – Ongoing Analysis 3

- New chip carrier & oxide thickness (new sensitivities);
- 2. The devices were easy to install and provide good responses;
- 6 mm of PMMA placed in front (covered chip) and behind (bare chip) the sensors;
- 4. Factor two in the responses coherent with the previous data.

Last RadFETs test beam 7

¹³⁷Cs γ IRRADIATION

Aim of the test → compare the usual γ calibration of RadFETs with particle responses

"parasitic use" → source available only for the 25% of the beam-time (Max. Dose < 20 Gy *)</p>

Comparison with particle responses measured in the past NOT POSSIBLE (too low total dose)

Agreement with ⁶⁰Co data from producers <u>VERY GOOD</u>

² Dose measurement with a calibrated ionization chamber by TIS-RP

3th CMS Radiation Monitoring Meeting 15 May 2003

Outline ...

- \rightarrow CMS requirements;
- → Status until december 2002;

RadFETs dosimeters:

- \rightarrow Last test-beam data analysis;
- → Calibration suitable for CMS environment;
- \rightarrow Progress on instabilities studies;
- New types of on-line devices for Radiation Monitoring:
 - → OSL's → OSRAM *pin*-diodes
- Conclusions & Future works

RadFETs calibration in CMS 1

ECAL+Preshower

15 May 2003

RadFETs calibration in CMS 2

Shuttle system to place the samples at different distances (z) from target

- Deposed dose known by FLUKA simulations;
- Optimization of the calibration for the different CMS sub-detectors;
- Possibility to perform comparative tests

F.Ravotti

After Maurice Glaser

- \rightarrow CMS requirements;
- → Status until december 2002;

RadFETs dosimeters:

- \rightarrow Last test-beam data analysis;
- \rightarrow Calibration suitable for CMS environment;
- \rightarrow Progress on instabilities studies;
- New types of on-line devices for Radiation Monitoring:
 - → OSL's → OSRAM *pin*-diodes
- Conclusions & Future works

RadFETs instabilities 1

The high annealing of oxide trapped charges was bigger than the charge build-up inside the oxide itself.

("Instantaneous" effects)

Studied Phenomenon

During the life of the device under irradiation, interfaces states can be generated \Rightarrow T<u>he response of the</u> <u>device can change</u> especially at low dose-rate! (delayed effect)

Not-studied Phenomenon!

RadFETs instabilities 2

A methods to evaluate the quality of the whole Silicon Dioxide already exists:

ISOCHRONAL ANNEALING

Accelerated characterization methods that predict in a short time the device long term behavior.

After Irradiation, brief annealing periods at increasing T

Parameters have to be chose according with the expected use of the device.

F.Ravotti

3th CMS Radiation Monitoring Meeting 15 May 2003

- \rightarrow CMS requirements;
- → Status until december 2002;

RadFETs dosimeters:

- \rightarrow Last test-beam data analysis;
- \rightarrow Calibration suitable for CMS environment;
- \rightarrow Progress on instabilities studies;
- New types of on-line devices for Radiation Monitoring:

 → OSL's
 → OSRAM *pin*-diodes
- Conclusions & Future works

New types of on-line dosimeters

- RadFETs and p⁺/n/n⁺ diodes can satisfy most of the requirements, but don't match all sensitivities and dynamic ranges required from CMS sub-detectors;
 - 2. The "sensibility" in mixed radiation environment of RadFETs silicon oxide, suggest to have an independent way to measure the deposed dose (for example to cross-check the data in critical locations).

OSL for on-line dosimetry - General

READING

With IR stimulation the electrons are detrapped and a visible light is emitted.

- Dosimetric parameter \rightarrow visible light linear with dose delivered to material.
- After the reading the material is <u>completely reset</u> and can reused as new.

WRITING ...

During irradiation, secondary electrons can be trapped and the information about the irradiation is so memorized.

OSL for on-line dosimetry – Sensors 1

- linear response up to 400 Gy;
- very high sensitivity (max 100 μGy);
- no fading (few hours after exp.);
- particle independent response;
- characterized for LEP and photons;
- need to be studied for HEP and

neutron response.

F.Ravotti

- A sensor prototype already exist;
 - Sensor + readout circuit + feedback loop

to control the current on the LED on PCB;

3th CMS Radiation Monitoring Meeting 15 May 2003 After L. Dusseau 23

OSL for on-line dosimetry – Sensors 2

- Low dimensions and power consumption;
- Sensitivity and dynamic range can managed by changing the readout frequency;
- The readout electronic can be placed outside the experiment:

 \rightarrow This will reduce space and avoid NIEL problems in LED/photodiodes.

OSRAM p-i-n diodes

— Devices not designed for dosimetric purposes;

- Already tested at CERN in the past;
- Measurement of forward voltage (direct bias);
- Seems to have linear behaviour under irradiation;
- They reach high fluences (> 10¹⁴ part/cm²);
- The reproducibility of the measurement has to be tested;
- --- NIEL scaling has to be checked;
- Very cheap devices!

After Maurice Glaser

Conclusions & Future works

1. RadFETs dosimeters:

- Verified packaging influence in neutron environment;
- Calibration problem & new "ready to use" devices:

 \rightarrow more test beam in IRRAD2 facility;

• Instability studies: worried about device long term behavior;

 \rightarrow Isochronal annealing study has to be continued (new supplier).

2. OSL dosimeters:

- Allow us to fully satisfy CMS requests in terms of dose measurements:
 - → Fully characterization in HEP (IRRAD1) and mixed-neutron field (IRRAD2 / TCC2);
 - \rightarrow Construction of a bench-test to measure the dosimeters at CERN;
- 3. OSRAM p-i-n diodes:
 - Can help to cover CMS requirements about fluence measurements:

 \rightarrow characterization in different beams and data comparison have to be continued.