Development of ATLAS Radiation Monitor

Gregor Kramberger, Vladimir Cindro, Igor Mandić, Marko Mikuž, Marko Zavrtanik Jožef Stefan Institute, Ljubljana

ATLAS radiation monitors

- Instantaneous:
 - Beam Condition Monitor BCM

EDMS document: ATL-IC-ES-0013

- Integrating on-line
 - Total Ionization Dose TID
 - Non-Ionizing Energy Loss NIEL
 - Thermal Neutrons

EDMS document: *ATL-IC-ES-0017*

- Integrating off-line
 - TLD, counting on common LHC effort

On-line monitoring

Constraints for on-line monitors:

- Use of standard ATLAS DCS components
 already qualified for use in ATLAS
- Size of the sensor boards
 - dimensions in ATLAS: 8 mm x 4 cm x 4 cm
- Cables from user-accessible area *PP2 inside muon system* to *PP1* (allocated few years ago):
 - Type II cable: 12 thin wires 0.22 Ω/m , 4 thick wires 0.033 Ω/m → limits the number of sensors per monitoring board
- Choice of locations limited

Schematic view of the on-line monitor

Position of Radiation Monitoring Sensor Boards (RMSB)

Sensors planned to be used on RMSB

Monitor Total Ionizing Dose (TID):

- RADFET's (threshold voltage increase)
 - High-sensitivity (thick oxide) for LHC startup
 - Low-sensitivity (thin oxide) to cover standard 3+7 scenario

Monitor NIEL:

- EPI PIN-diodes (leakage current increase with NIEL)
 - Rely on $\Delta I/V = \alpha \times \Phi$
 - EPI thin (25 $\mu m)$ substrate depleted at < 30 V
- PIN diodes under forward bias (resistivity increase with NIEL)
 - OSRAM BPW 34F high fluence (sensitivity around 10¹³ n/cm²)
 - High sensitivity diodes low fluence (sensitivity around 10¹⁰ n/cm²)

Monitor thermal neutrons:

• DMILL bipolar transistor from ATMEL (test structures from ABCD3T production wafers)

- Common emitter current gain degrades with fluence
- Sensitivity to thermal neutrons \sim 3 x NIEL
- Provides direct monitoring of damage on ABCD3T input transistor

Temperature control

- all types of sensors are sensitive to temperature
- temperature should be stable to simplify analysis (annealing...)

Stabilization achieved by heating sensor boards to few degrees above environment temperature of ~20°C.

NIEL monitoring – epi-Si diodes

Measurement principle: reverse bias leakage current increase in diode after irradiation $\Delta I/V = \alpha \times \Phi_{eq}$.

Samples (ITME grown epi-Si, CiS process) •25 µm epi-Si , $\rho_{initial}$ =50 Ωcm, V_{fd} =25 V, 5x5 mm² • V_{fd} always less that 28 V (limited by DAC)

25 μ m n-type epitaxial layer

Cz substrate (300 μ**m)** [O] > 10¹⁸ cm⁻³

irradiated with neutrons at JSI reactor in Ljubljana
Irradiated with 23 GeV protons at CERN PS

Measured leakage currents are in accordance with expectations

Operational ($V_{fd} < 28$ V) even at 10^{15} cm⁻² !

Annealing studies performed at 20°C

epi-Si can be sensitive also during low luminosity running!

NIEL monitoring – OSRAM PIN (BPW 34F)

Measurement of forward bias resistance of irradiated PIN diodes

Several samples irradiated with neutrons at JSI reactor in Ljubljana:

- •Better linearity with fluence at higher current
- •Annealing does play a significant role

NIEL monitoring – high-sensitive PIN

Irradiation of single diode in steps

- •One minute between two fluence points
- •Excellent sensitivity for low fluences
- •Annealing could be important studies in progress

DMILL structures

Same transistor as input transistor of ABCD3T readout chip

Read-out

ELMB + DAC boards:

ELMB available, 64 ADC channels
DAC boards will be produced next year (prototypes were tested), 4 boards (16 channels each) per ELMB Fully compatible with ATLAS DCS (CAN bus communication)

Compliant with radiation tolerance requirements

3-4 "RM sensor boards" per ELMB:

 DACs: with external power supply of 30 V
 •current output: 0-1 mA maximum voltage drop 28 V (sensors) 0-10 mA maximum voltage drop 10 V (heaters)
 •voltage output: current drop over the resistor

ADCs: 64 (12 bit)

•conversion rate from 2-100 Hz

•different dynamic ranges can be selected

•use of attenuators, Pt1000 readouts etc. with resistor/capacitor network plugs

<u>Readout principles</u> **RADFET,PIN:** current enforced (DAC)-voltage measured (ADC) **EPI:** current (DAC) converted to voltage (resistor) – voltage drop on resistor due to leakage current measured (ADC) **DMILL:** collector current enforced (DAC) – voltage drop on resistor due to base current measured (ADC)

HEATER: 3-5 DAC channels (200 mW/ch.) connected together

Sensor board

Sensor boards will be made on square inch AIN ceramics:

- •600 μm thick
- •bondable (Au) and solderable contacts (Pd-Ag)
- •good heat conductance (140-177 W/m K)
- •high resistivity $(10^{10} \,\Omega cm)$

Board will be connected through PCB frame (mechanical support and thermal isolation)

Prototype

First test - readout

ELMB readout:

- 12 m Type II cables
- No DAC's available yet use Keithley current source
- Read-out over CAN-bus
- \rightarrow successful readout of all types of sensors demonstrated

Heater test

First tests:

•At least 3 DAC channels 200 mW each planned for heater

→enough power for stabilization of temperature of RMSB

Future plans

SENSOR studies:

•PIN BPW 34F – continue annealing at 20°C and start it also at 30°C to get data for Arrhenius relation interpolation

DMILL – already irradiated with n and p (CERN PS), annealing studies will follow
EPI – annealing studies (n,p irradiated samples) to verify the predicted behavior (M. Molls thesis)

RM board development:

population of the prototype boards with sensors
development of housing (PEEK plastics – radiation hard up to 1 GRad)
studies of realistic thermal properties of the sensor

DAC:

•first series will be commissioned soon

READ-OUT:

•PVSSII software development (has already started)

