ATLAS Radiation Monitor

• integrating monitor

Igor Mandić, Vladimir Cindro, Andrej Gorišek, Gregor Kramberger, Marko Mikuž, Marko Zavrtanik Jožef Stefan Institute, Ljubljana

I. Mandić, ATLAS Radiation Monitor, RADMON Working Group, September 27, 2005, CERN

- Integrating part of the ATLAS Radiation Monitor will measure online:
 - -Total Ionization Dose TID
 - -Non-Ionizing Energy Loss (bulk damage in silicon)
 - -Thermal Neutron Fluence (in the ID)

- more information in:
 - EDMS document: ATL-IC-ES-0017
 - http://www-f9.ijs.si/~mandic/RADMON/atlas_radiation_monitor.htm

Sensors for online radiation monitoring

Total Ionizing Dose (TID):

- RADFET's (threshold voltage increase)
 - thick oxide LAAS (for low doses), thin oxide REM (for high doses)

NIEL:

- PIN diodes under forward bias (resistivity increase with NIEL)
 - CMRP low fluences (< 10¹² n/cm²), BPW34F high fluences (> 10¹² n/cm²)
- EPI PIN-diodes (leakage current increase with NIEL)
 - \rightarrow Will be used only in the Inner Detector

Thermal neutrons (and monitor the damage of ABCD3T input transistor):

- DMILL bipolar transistor from ATMEL (increase of base current at given collector current)
 - \rightarrow Will be used only in the Inner Detector

Read-out

ELMB + ELMB DAC boards:

- ELMB available, 64 ADC channels
- DAC board (16 channels) produced and tested

Readout principles

Fully compatible with ATLAS DCS (CAN bus communication)

Compliant with radiation tolerance requirements

RADFET,PIN: current enforced (DAC)-voltage measured (ADC)

EPI: current (DAC) converted to voltage (resistor) – voltage drop on resistor due to leakage current measured (ADC)

DMILL: collector current enforced (DAC) – voltage drop on resistor due to base current measured (ADC)

Schematic view of the Inner Detector monitor

System test

Aim: determine the sensitivity of the system

- read sensors in certain time intervals time
- after 150 hours RMSB exposed to ^{22}Na source (D/t \sim 20 $\mu Sv/h)$

I. Mandić, ATLAS Radiation Monitor Meeting, September 27 2005, CERN

Osram BPW34F pin diode 0.5 () seig 0.545 Measure bias voltage at forward current $I_f = 1 \text{ mA}$ 0.54 0.535 0.53 0.525

Osram Pin

Sensitivity:

0.52

24

BPW34F ($\Delta V / \Delta \Phi = 1 V / 10^{13} n/cm^2$) \rightarrow better than 10¹⁰ n/cm² (but at $\Phi > 10^{10} \text{ n/cm}^2$)

27

Temperature (°C)

CMRP ($\Delta V / \Delta \Phi = 1 V / 10^{11} n/cm^2$) \rightarrow better than 10⁸ n/cm²

DMILL transistor:

Measure base current at collector current $I_c = 10 \ \mu A$

Temperature of the RMSB not stabilized \rightarrow correct for temperature variations offline:

Sensitivity:

Can detect fluences higher than $\sim 5 \times 10^{10} \text{ n/cm}^2$

• Sensitivity: 4 mGy with LAAS radfets and 10⁸ n/cm² with CMRP diodes is sufficient also for low luminosity years for most of subdetectors

→ important to get early information to compare with simulations

• Inner Detector: need more sensors per location to cover larger range of doses and to have higher level of redundancy because of very limited access.

Positions of RMSBs in the ID

RMSBs in calorimeters

LAAS radfets and CMRP diodes

System	TID (Gy/10y)	TID (Gy/LL year)	ΔV in the first year (V)	ΔV (10y)	NIEL (n/cm2/10y)	NIEL (n/cm2/frist y)	ΔV first year (V)	ΔV (10y)
Lar:	5.7-50	0.08-0.7	0.04-0.3	25.	1.5e11-1.5e12	2.1e9-2.1e10	0.01-0.1	0.7-7
TILE:	0.2-2.5	0.003-0.035	0.002-0.02	0.1-1	1.5e10-2.3e11	2.1e8-3.2e9	0.002-0.02	0.08-1

• waiting for number of locations in muon detector

Software

- programming of processor on ELMB board:
 - → sensor readout process controlled by ELMB (e.g.):
 - set DAC channel on
 - wait
 - read ADC channel
 - set DAC channel off
 - → temperature stabilization of Inner Detector monitor boards controlled by ELMB
 - ➔ much simpler to use, less trafic on CAN BUS, less dependent on computer status

Status of monitor for Inner Detector:

- prototype produced and tested
- DACs, connection board, ceramic hybrid, housing designed and in production
- cabling defined, space for patch panels and ELMBs reserved
- software (programming of processor on ELMB board) written
- sensors (RADFETs, CMRP, BPW34F) should be available soon
 - ➔ whole system can be ready for installation by the end of the year

Status of Monitors for Locations Outside of the Inner Detector

- simplified version of ID system :
 - \rightarrow LAAS radfet + CMRP diode + temperature sensor
 - \rightarrow no temperature stabilization
 - \rightarrow sensor board is a simple PCB
 - \rightarrow can be delivered (board with pig-tail) soon after sensors are ready

waiting for number of locations in muon detector
waiting for number of DAC boards needed by calorimeters

Proposal for locations of passive monitors (TLDs) made

New development by Muon System

M. Shupe, ATLAS RADMON meeting, 27/6/2005: http://agenda.cern.ch/fullAgenda.php?ida=a054176#2005-06-27

- Measuring Atlas Radiation Backgrounds in the Muon System at Startup
- ➔ Monitor neutron, photon, and charged particle fluxes/spectra in pulsed mode for sensitivity at low luminosity. Compare measured fluxes to FLUKA and GCALOR to "recalibrate" simulations.

Conclusion

- radiation sensors selected, packaging defined
- prototypes made and tested
- all components for readout designed, production of components for Inner Detector started
- ELMB software written
- PCBs for sensor boards for Tile and LAr produced
- ➔ Waiting for information from Tile and LAr about cabling to start production of DAC and patch panel boards
- ➔ waiting for number of locations for muon subdetector system
- locations of passive dosimeters defined